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Problem statement
We are interested in solving the problem:

minimize
x∈Rn

f (x) , ψ(x) + h(F (x))

where ψ : Rn → R, F : Rn → Rp, h : Rp → R,

and

I ψ is smooth with known derivatives
I h is nonsmooth, piecewise linear, and has a known structure

(cheap to evaluate)
I F is smooth, nonlinear, and has a relatively unknown structure

(expensive to evaluate)

Piecewise linear h does not imply h ◦ F is piecewise linear.
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Notes

I The manifold sampling framework does not require the availability of
the Jacobian ∇F .

I Applicable both when inexact values for ∇F (x) are available and in the
derivative-free case, when only F (x) is available.

I We will build component models mFi of each Fi around points x . We
can then use ∇M(x) ∈ Rn×p where

∇M(x) ,
[
∇mF1(x), . . . ,∇mFp (x)

]
.
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Piecewise linear functions

Definition
A function h : Rp → R is piecewise linear if h is continuous and there
exists a finite collection H , {hi : i = 1, . . . , m̂} of affine functions that
map Rp into R, for which

h(z) ∈
{
h̃(z) : h̃ ∈ H

}
, ∀z ∈ Rp.

I h is a continuous selection of H.
I Elements of H are selection functions of h.
I hi : z ∈ Rp 7→ 〈ai , z〉+ bi for each i .

Definition
Si , {y : h(y) = hi (y)} , S̃i , cl (int (Si )) , Ih(z) ,

{
i : z ∈ S̃i

}
,

hi for i ∈ Ih(z) is an essentially active selection function for h at z .
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Essentially active
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Essentially active
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Laser pulse propagating in a plasma channel
Determine plasma channel properties that minimize the maximum
difference in the laser intensity.
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Configuration 1
Configuration 2

f (x) = max
Ω1
{Fi (x)} −min

Ω2
{Fi (x)}
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Formulation

h(F (x)) = max {sin(2x) + 1, cos(2x), x} −min {sin(2x) + 1, cos(2x), x}
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A generalized derivative

Definition
The generalized Clarke subdifferential of f at x is defined as

∂Cf (x) , co
({

ξ : ξ = lim
y j→x
∇f (y j) : y j ∈ D

})
,

where co (·) denotes the convex hull.

For our case:
∂Ch(z) = co ({ai : i ∈ Ih(z)})

Definition
A point x is called a Clarke stationary point of f if 0 ∈ ∂Cf (x).
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Algorithm components

I Generator set Gk

I Smooth master model mf
k

I Trust-region subproblem solution sk

I Measuring decent with ρk
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Generator set
At some iterate xk ,

Gk ,
⋃

i∈Ih(F (xk ))

{
∇ψ(xk) +∇M(xk)ai

}
where Ih(F (xk)) is the set of essentially active indices.

Or, given a set of points Y =
{
xk , y2, . . . , yp

}
⊂ B(xk ,∆k) ,

Gk ,
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇ψ(xk) +∇M(xk)ai

}

Assumption

The set Gk satisfies{
∇ψ(xk) +∇M(xk) ai : i ∈ Ih(F (xk))

}
⊆ Gk

Gk ⊆
{
∇ψ(xk) +∇M(xk) ai : y ∈ B

(
xk ; ∆k

)
, i ∈ Ih(F (y))

}
.
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Smooth master model
Our model gradients around iterate xk satisfy

gk , proj
(
0, co

(
Gk)) ∈ co

(
Gk) ,

Let λ∗ be the corresponding coefficients so that gk = G kλ∗.

Define

Ak ,

aj1 · · · ajt

 ,
and set w k = Akλ∗. Define the smooth master model mf

k : Rn → R,

mf
k(x) , ψ(xk) +

p∑
i=1

w k
i mFi (x) +

p∑
i=1

λ∗i bji .
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Trust region subproblem

Approximately solve

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

to obtain a solution s satisfying

ψ(xk)−ψ(xk+s)+
〈
M(xk)−M(xk + s),w k〉 ≥ κd

2
‖gk‖min

{
∆k ,
‖gk‖
κmh

}
.
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Measuring descent

I Descent is measured using some selection function h(k) and not h

I Must ensure information about h(k) is in Gk before taking a step

I h(k) must satisfy

h(k)(F (xk)) ≤ h(F (xk)) and h(k)(F (xk + sk)) ≥ h(F (xk + sk)),

I ρk ,
ψ(xk)− ψ(xk + sk) + h(k)(F (xk))− h(k)(F (xk + sk))

ψ(xk)− ψ(xk + sk) + 〈M(xk)−M(xk + sk), a(k)〉
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Examples of h(k)

 F(x) F(x+s)

h
(F

(x
))

h
(k)

14 of 32.



Examples of h(k)

 F(x) F(x+s)

h
(F

(x
))

h
(k)

14 of 32.



Examples of h(k)

 F(x) F(x+s)

h
(F

(x
))

h
(k)

14 of 32.



Examples of h(k)

 F(x) F(x+s)

h
(F

(x
))

h
(k)

14 of 32.



Algorithm components

I Generator set Gk

I Smooth master model mf
k

I Trust-region subproblem solution sk
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Algorithm MS4PL

Choose initial iterate x0 and trust-region radius ∆0 > 1
for k = 0, 1, 2, . . . do

Build p component models mFi that are fully linear on B(xk ,∆k )
Form ∇M(xk ) using ∇mFi (xk ) and construct Gk ⊂ Rn

ρk ← −∞
while ρk = −∞ do

Update component models mFi ; build master model mf

if ∆k < η2‖∇mf (xk )‖ (acceptability criterion) then
Approximately solve TRSP to obtain sk

Evaluate F (xk + sk ) and find h(k)

if (∇ψ(xk ) +∇M(xk ) a(k)) ∈ Gk then
Calculate ρk

else
Gk ← Gk ∪ {∇ψ(xk ) +∇M(xk ) a(k)}

else
break out of while-loop; iteration is unacceptable

if ρk > η1 > 0 (successful iteration) then
xk+1 ← xk + sk , ∆k+1 ← min{γinc∆k ,∆max}

else
xk+1 ← xk , ∆k+1 ← γdec∆k

16 of 32.



17 of 32.



17 of 32.



Generator set
At some iterate xk ,

Gk ,
⋃

i∈Ih(F (xk ))

{
∇ψ(xk) +∇M(xk)ai

}
where Ih(F (xk)) is the set of essentially active indices.

Or, given a set of points Y =
{
xk , y2, . . . , yp

}
⊂ B(xk ,∆k) ,

Gk ,
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇ψ(xk) +∇M(xk)ai

}

Assumption

The set Gk satisfies{
∇ψ(xk) +∇M(xk) ai : i ∈ Ih(F (xk))

}
⊆ Gk

Gk ⊆
{
∇ψ(xk) +∇M(xk) ai : y ∈ B

(
xk ; ∆k

)
, i ∈ Ih(F (y))

}
.

18 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



19 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



20 of 32.



Generator set
At some iterate xk ,

Gk ,
⋃

i∈Ih(F (xk ))

{
∇ψ(xk) +∇M(xk)ai

}
where Ih(F (xk)) is the set of essentially active indices.

Or, given a set of points Y =
{
xk , y2, . . . , yp

}
⊂ B(xk ,∆k) ,

Gk ,
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇ψ(xk) +∇M(xk)ai

}

Assumption

The set Gk satisfies{
∇ψ(xk) +∇M(xk) ai : i ∈ Ih(F (xk))

}
⊆ Gk

Gk ⊆
{
∇ψ(xk) +∇M(xk) ai : y ∈ B

(
xk ; ∆k

)
, i ∈ Ih(F (y))

}
.

21 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



22 of 32.



Convergence

I If the trust region radius ∆k is a sufficiently small multiple of the master
model gradient

∥∥gk
∥∥, the iteration is guaranteed to be successful.

I limk→∞∆k = 0.

I Some subsequence of master model gradients gk goes zero.

I Zero is in the generalized Clarke subdifferential of cluster points of any
subsequence of iterates with master model gradients converging to zero.

I The same holds for cluster points of the sequence of MS4PL iterates.
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Test problems
Let h be a censored `1-loss function. Given data d ∈ Rp, censors
c ∈ Rp, and the mapping F : Rn → Rp, we define

f (x) =

p∑
i=1

|di −max {Fi (x), ci}| .

That is, ψ = 0, and

h(y) =

p∑
i=1

|di −max {yi , ci}| .

Define F to be the 53 vector mapping in the Móre and Wild
benchmarking set. 2 ≤ n ≤ 12, 2 ≤ p ≤ 45.
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Test problems

f (x) =
∑p

i=1 |di −max {Fi (x), ci}|

Try to define d and c to introduce many points of nondifferentiability.

Draw ci from U (`i , ui )

`i = min
{
Fi (x0),Fi (x∗)

}
and ui = max

{
Fi (x0),Fi (x∗)

}
.

Make the (crude) assumption that Fi (x) ∼ U(`i , ui ), then

max{ci ,Fi (x)} ∼ (ui − `i ) ∗ β(2, 1) + `i .

Draw di from this distribution for 2 ≤ i ≤ p.

Set c1 = −∞ and d1 = 0.

25 of 32.



Test problems

f (x) =
∑p

i=1 |di −max {Fi (x), ci}|

Try to define d and c to introduce many points of nondifferentiability.

Draw ci from U (`i , ui )

`i = min
{
Fi (x0),Fi (x∗)

}
and ui = max

{
Fi (x0),Fi (x∗)

}
.

Make the (crude) assumption that Fi (x) ∼ U(`i , ui ), then

max{ci ,Fi (x)} ∼ (ui − `i ) ∗ β(2, 1) + `i .

Draw di from this distribution for 2 ≤ i ≤ p.

Set c1 = −∞ and d1 = 0.

25 of 32.



Test problems

f (x) =
∑p

i=1 |di −max {Fi (x), ci}|

Try to define d and c to introduce many points of nondifferentiability.

Draw ci from U (`i , ui )

`i = min
{
Fi (x0),Fi (x∗)

}
and ui = max

{
Fi (x0),Fi (x∗)

}
.

Make the (crude) assumption that Fi (x) ∼ U(`i , ui ), then

max{ci ,Fi (x)} ∼ (ui − `i ) ∗ β(2, 1) + `i .

Draw di from this distribution for 2 ≤ i ≤ p.

Set c1 = −∞ and d1 = 0.

25 of 32.



Test problems

f (x) =
∑p

i=1 |di −max {Fi (x), ci}|

Try to define d and c to introduce many points of nondifferentiability.

Draw ci from U (`i , ui )

`i = min
{
Fi (x0),Fi (x∗)

}
and ui = max

{
Fi (x0),Fi (x∗)

}
.

Make the (crude) assumption that Fi (x) ∼ U(`i , ui ), then

max{ci ,Fi (x)} ∼ (ui − `i ) ∗ β(2, 1) + `i .

Draw di from this distribution for 2 ≤ i ≤ p.

Set c1 = −∞ and d1 = 0.

25 of 32.



Examples

 

 

0

1

2

3

4

5

6

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

0

2

4

6

8

10

12

14

16

18

26 of 32.



Algorithms to compare

MS4PL-1 Using manifolds at xk

MS4PL-2 Using manifolds in B(xk ,∆k)

PLC POUNDERs using a single manifold active at xk to form
a master model

SLQP-GS Gradient sampling algorithm from Curtis

GRANSO BFGS-SQP algorithm Mitchell, Curtis, and Overton.
(Can handle constraints too.)
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Gradient sampling

Theorem (Rademacher)

If S ⊂ Rn is open and f : S → R is locally Lipschitz on S , then f is
differentiable almost everywhere on S .

28 of 32.



Gradient sampling
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

Gk = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}

2. Set ξk to be the minimum norm element in Gk .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be points of nondifferentiability
I Significant sampling may be required
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Tests

f test A method s solves a problem p to a level τ after j
function evaluations if

f (x0)− f (x j ) ≥ (1− τ)(f (x0)− f̃p)

x0 is the problem’s starting point, and f̃p is the
best-found function value.

∂Cf test Sample gradients.

Draw 30 points uniformly from B(x j , 10−8) for each point
x j evaluated by each method.

s solves p to a level τ after j function evaluations if∥∥g̃j
∥∥ ≤ τ ∥∥g̃0

∥∥

30 of 32.



Tests

f test A method s solves a problem p to a level τ after j
function evaluations if

f (x0)− f (x j ) ≥ (1− τ)(f (x0)− f̃p)

x0 is the problem’s starting point, and f̃p is the
best-found function value.

∂Cf test Sample gradients.

Draw 30 points uniformly from B(x j , 10−8) for each point
x j evaluated by each method.

s solves p to a level τ after j function evaluations if∥∥g̃j
∥∥ ≤ τ ∥∥g̃0

∥∥

30 of 32.



Tests

f test A method s solves a problem p to a level τ after j
function evaluations if

f (x0)− f (x j ) ≥ (1− τ)(f (x0)− f̃p)

x0 is the problem’s starting point, and f̃p is the
best-found function value.

∂Cf test Sample gradients.

Draw 30 points uniformly from B(x j , 10−8) for each point
x j evaluated by each method.

s solves p to a level τ after j function evaluations if∥∥g̃j
∥∥ ≤ τ ∥∥g̃0

∥∥

30 of 32.



Tests

f test A method s solves a problem p to a level τ after j
function evaluations if

f (x0)− f (x j ) ≥ (1− τ)(f (x0)− f̃p)

x0 is the problem’s starting point, and f̃p is the
best-found function value.

∂Cf test Sample gradients.

Draw 30 points uniformly from B(x j , 10−8) for each point
x j evaluated by each method.

s solves p to a level τ after j function evaluations if∥∥g̃j
∥∥ ≤ τ ∥∥g̃0

∥∥

30 of 32.



Data profiles
f -test, τ = 10−2
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Data profiles
f -test, τ = 10−5
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Data profiles
∂Cf -test, τ = 10−3
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Data profiles
∂Cf -test, τ = 10−8
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Conclusions

When optimizing functions of the form h(F (x)) when
I h is “easy”
I F is “hard”

it can be advantageous to model Fi and then combine those models via
known information about h.

Email jmlarson@anl.gov for a preprint.

Thank you!
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